On the Frobenius-schur Indicators for Quasi-hopf Algebras

نویسنده

  • PETER SCHAUENBURG
چکیده

Mason and Ng have given a generalization to semisimple quasiHopf algebras of Linchenko and Montgomery’s generalization to semisimple Hopf algebras of the classical Frobenius-Schur theorem for group representations. We give a simplified proof, in particular a somewhat conceptual derivation of the appropriate form of the Frobenius-Schur indicator that indicates if and in which of two possible fashions a given simple module is self-dual.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central Invariants and Higher Indicators for Semisimple Quasi-hopf Algebras

In this paper, we define the higher Frobenius-Schur (FS-)indicators for finite-dimensional modules of a semisimple quasi-Hopf algebra H via the categorical counterpart developed in a 2005 preprint. When H is an ordinary Hopf algebra, we show that our definition coincides with that introduced by Kashina, Sommerhäuser, and Zhu. We find a sequence of gauge invariant central elements of H such that...

متن کامل

A Note on Frobenius-schur Indicators

This exposition concerns two different notions of Frobenius-Schur indicators for finite-dimensional Hopf algebras. These two versions of indicators coincide when the underlying Hopf algebra is semisimple. We are particularly interested in the family of pivotal finite-dimensional Hopf algebras with unique pivotal element; both indicators are gauge invariants of this family of Hopf algebras. We o...

متن کامل

Twisted Frobenius–schur Indicators for Hopf Algebras

The classical Frobenius–Schur indicators for finite groups are character sums defined for any representation and any integer m ≥ 2. In the familiar case m = 2, the Frobenius–Schur indicator partitions the irreducible representations over the complex numbers into real, complex, and quaternionic representations. In recent years, several generalizations of these invariants have been introduced. Bu...

متن کامل

Frobenius-schur Indicators for a Class of Fusion Categories

We give an explicit description, up to gauge equivalence, of group-theoretical quasi-Hopf algebras. We use this description to compute the Frobenius-Schur indicators for grouptheoretical fusion categories.

متن کامل

Twisted Exponents and Twisted Frobenius–schur Indicators for Hopf Algebras

Classically, the exponent of a group is the least common multiple of the orders of its elements. This notion was generalized by Etingof and Gelaki to the context of Hopf algebras. Kashina, Sommerhäuser and Zhu later observed that there is a strong connection between exponents and Frobenius– Schur indicators. In this paper, we introduce the notion of twisted exponents and show that there is a si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008